References
1. Fauci AS, Lane HC, and Redfield RR. Covid-19 - Navigating the Uncharted. N Engl J Med. 2020;382(13):1268-9.
2. Paules CI, Marston HD, and Fauci AS. Coronavirus Infections-More Than Just the Common Cold. JAMA. 2020;323(8):707-8.
3. Barlow A, Landolf KM, Barlow B, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019.Pharmacotherapy. 2020;40(5):416-37.
4. Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med. 2020.
5. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A.2020;117(20):10970-5.
6. Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA.2020;324(11):1048-57.
7. White KM, Rosales R, Yildiz S, et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science. 2021.
8. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev.2020;19(7):102569.
9. Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;369(6506):1014-8.
10. Soy M, Keser G, Atagunduz P, Tabak F, Atagunduz I, and Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol.2020;39(7):2085-94.
11. Becker RC. COVID-19 update: Covid-19-associated coagulopathy.J Thromb Thrombolysis. 2020;50(1):54-67.
12. Hasoksuz M, Kilic S, and Sarac F. Coronaviruses and SARS-COV-2.Turk J Med Sci. 2020;50(SI-1):549-56.
13. Pouletty M, Borocco C, Ouldali N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79(8):999-1006.
14. Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med.2020;26(4):506-10.
15. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.2020;395(10223):497-506.
16. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet.2020;395(10229):1033-4.
17. Rodrigues TS, de Sa KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3).
18. Kroemer A, Khan K, Plassmeyer M, et al. Inflammasome activation and pyroptosis in lymphopenic liver patients with COVID-19. J Hepatol. 2020.
19. Aid M, Busman-Sahay K, Vidal SJ, et al. Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell. 2020.
20. Gao YL, Zhai JH, and Chai YF. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm.2018;2018:5823823.
21. Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311-8.
22. Man SM, Karki R, and Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75.
23. Kovacs SB, and Miao EA. Gasdermins: Effectors of Pyroptosis.Trends Cell Biol. 2017;27(9):673-84.
24. Zhang Y, Chen X, Gueydan C, and Han J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28(1):9-21.
25. Fleisher TA. Apoptosis. Ann Allergy Asthma Immunol.1997;78(3):245-9; quiz 9-50.
26. Moretti J, and Blander JM. Increasing complexity of NLRP3 inflammasome regulation. J Leukoc Biol. 2020.
27. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.
28. Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500.
29. Grobler C, Maphumulo SC, Grobbelaar LM, et al. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci. 2020;21(14).
30. Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070-6.
31. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell.2020;181(5):1036-45 e9.
32. Carfi A, Bernabei R, Landi F, and Gemelli Against C-P-ACSG. Persistent Symptoms in Patients After Acute COVID-19. JAMA.2020;324(6):603-5.
33. Garg P, Arora U, Kumar A, and Wig N. The ”post-COVID” syndrome: How deep is the damage? J Med Virol. 2020.
34. Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem. 2005;48(22):6779-82.
35. Stack JH, Beaumont K, Larsen PD, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol.2005;175(4):2630-4.
36. Foy BH, Carlson JCT, Reinertsen E, et al. Association of Red Blood Cell Distribution Width With Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection. JAMA Netw Open. 2020;3(9):e2022058.
37. Maellaro E, Leoncini S, Moretti D, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol. 2013;50(4):489-95.
38. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. medRxiv. 2020.
39. Cheung EW, Zachariah P, Gorelik M, et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020;324(3):294-6.
40. Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020;20(11):e276-e88.
41. Singh-Grewal D, Lucas R, McCarthy K, et al. Update on the COVID-19-associated inflammatory syndrome in children and adolescents; paediatric inflammatory multisystem syndrome-temporally associated with SARS-CoV-2. J Paediatr Child Health. 2020;56(8):1173-7.
42. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA.2020;323(20):2052-9.
43. Yap JKY, Moriyama M, and Iwasaki A. Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19. J Immunol. 2020;205(2):307-12.
44. Sutterwala FS, Haasken S, and Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82-95.
45. Akdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984-1010.
46. Arend WP, Palmer G, and Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20-38.
47. He Y, Hara H, and Nunez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci. 2016;41(12):1012-21.
48. Latz E, Xiao TS, and Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397-411.
49. Zhou Z, Ren L, Zhang L, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe.2020;27(6):883-90 e2.
50. Labzin LI, Lauterbach MA, and Latz E. Interferons and inflammasomes: Cooperation and counterregulation in disease. J Allergy Clin Immunol. 2016;138(1):37-46.
51. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991-1045.
52. Matzinger P. The danger model: a renewed sense of self.Science. 2002;296(5566):301-5.
53. Carelli-Alinovi C, Pirolli D, Giardina B, and Misiti F. Protein kinase C mediates caspase 3 activation: A role for erythrocyte morphology changes. Clin Hemorheol Microcirc. 2015;59(4):345-54.
54. Firat U, Kaya S, Cim A, et al. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Exp Diabetes Res.2012;2012:316384.
55. Rinalducci S, Ferru E, Blasi B, Turrini F, and Zolla L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012;10 Suppl 2:s55-62.
56. Zini G, Bellesi S, Ramundo F, and d’Onofrio G. Morphological anomalies of circulating blood cells in COVID-19. Am J Hematol.2020;95(7):870-2.
57. Liu Y, Zhang X, Qiao J, et al. A Controllable Inflammatory Response and Temporary Abnormal Coagulation in Moderate Disease of COVID-19 in Wuhan, China. J Clin Med Res. 2020;12(9):590-7.
58. Tomar B, Anders HJ, Desai J, and Mulay SR. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.Cells. 2020;9(6).
59. Wiewiora M, Piecuch J, Sedek L, Mazur B, and Sosada K. The effects of obesity on CD47 expression in erythrocytes. Cytometry B Clin Cytom. 2017;92(6):485-91.
60. Marini JJ, and Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323(22):2329-30.
61. Neupane K, Ahmed Z, Pervez H, Ashraf R, and Majeed A. Potential Treatment Options for COVID-19: A Comprehensive Review of Global Pharmacological Development Efforts. Cureus. 2020;12(6):e8845.
62. Shahzad K, Bock F, Al-Dabet MM, et al. Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy. J Am Soc Nephrol.2016;27(8):2270-5.
63. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, and Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes.Proc Natl Acad Sci U S A. 2002;99(9):6252-6.
64. Frenette CT, Morelli G, Shiffman ML, et al. Emricasan Improves Liver Function in Patients With Cirrhosis and High Model for End-Stage Liver Disease Scores Compared With Placebo. Clin Gastroenterol Hepatol.2019;17(4):774-83 e4.
65. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int.2015;35(3):953-66.
66. Harrison SA, Goodman Z, Jabbar A, et al. A randomized, placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis. J Hepatol. 2020;72(5):816-27.
67. Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature.2014;505(7484):509-14.
68. Schurink B, Roos E, Radonic T, Barbe E, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020.
69. Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, et al. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med.2020;18(1):257.
70. Jeremy D. Baker RLU, Gerald C. Kraemer, Jason E. Love, and Brian C. Kraemer. A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV-2 main 1 protease. 2020.
71. Yaqinuddin A, and Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1beta/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906.
72. Mitrani RD, Dabas N, and Goldberger JJ. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors.Heart Rhythm. 2020;17(11):1984-90.